If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24x^2+34x-45=0
a = 24; b = 34; c = -45;
Δ = b2-4ac
Δ = 342-4·24·(-45)
Δ = 5476
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5476}=74$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(34)-74}{2*24}=\frac{-108}{48} =-2+1/4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(34)+74}{2*24}=\frac{40}{48} =5/6 $
| 13-7x=2x-50 | | 4n+4=14 | | 2-7c=1-8c | | -9-10s=-7s | | 14y-6=-10+2(8y+2) | | 6-d/3-10=-2 | | 9-5r=4r | | 11x-7(5x-7)=-23 | | 7-7/9w=56 | | -6+3j=4j | | 3.4b+7=3.9b-7 | | 2.75+24c=44.03 | | 0.07(x+1,000)=3,500 | | 8.7x+13.82=-11.3+12.68 | | 3.7x-14.23=7.6 | | -27=-5b+3 | | 0.15(x+2,000)=6,600 | | 6^2x-6=36 | | 3q+4=q+8 | | 6.7x+2(x+0.5)=0.7x+2(x+8) | | 79x3-6=0 | | 6(9-x)-3(8x-3)=6x+9 | | 2-11p=23-14p | | 5x+9=-2-5x | | 35c^2-6c-9=0 | | 2(m+3)=16. | | 3h^2h=3 | | -9-a=6 | | 10x-9=5x+8 | | 10^(6x)=25 | | 6m^2+8m-3=0 | | 8y+11=11-7y |